
Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used
for the values of random variables and for scalar functions. Quantities that are
required to be real-valued vectors are written in bold and in lower case (even if
random variables). Matrices are bold capitals.

.
= equality relationship that is true by definition
≈ approximately equal
∝ proportional to
Pr{X=x} probability that a random variable X takes on the value x
X ∼ p random variable X selected from distribution p(x)

.
= Pr{X=x}

E[X] expectation of a random variable X, i.e., E[X]
.
=
∑
x p(x)x

arg maxa f(a) a value of a at which f(a) takes its maximal value
lnx natural logarithm of x
ex the base of the natural logarithm, e ≈ 2.71828, carried to power x; eln x = x
R set of real numbers
f : X→ Y function f from elements of set X to elements of set Y

← assignment
(a, b] the real interval between a and b including b but not including a

ε probability of taking a random action in an ε-greedy policy
α, β step-size parameters
γ discount-rate parameter
λ decay-rate parameter for eligibility traces
1predicate indicator function (1predicate

.
= 1 if the predicate is true, else 0)

In a multi-arm bandit problem:
k number of actions (arms)
t discrete time step or play number
q∗(a) true value (expected reward) of action a
Qt(a) estimate at time t of q∗(a)
Nt(a) number of times action a has been selected up prior to time t
Ht(a) learned preference for selecting action a at time t
πt(a) probability of selecting action a at time t
R̄t estimate at time t of the expected reward given πt

In a Markov Decision Process:
s, s′ states
a an action
r a reward
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of all actions available in state s
R set of all possible rewards, a finite subset of R
⊂ subset of; e.g., R ⊂ R
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∈ is an element of; e.g., s ∈ S, r ∈ R

|S| number of elements in set S

t discrete time step
T, T (t) final time step of an episode, or of the episode including time step t
At action at time t
St state at time t, typically due, stochastically, to St−1 and At−1
Rt reward at time t, typically due, stochastically, to St−1 and At−1
π policy (decision-making rule)
π(s) action taken in state s under deterministic policy π
π(a|s) probability of taking action a in state s under stochastic policy π

Gt return following time t
h horizon, the time step one looks up to in a forward view
Gt:t+n, Gt:h n-step return from t+ 1 to t+ n, or to h (discounted and corrected)
Ḡt:h flat return (undiscounted and uncorrected) from t+ 1 to h
Gλt λ-return
Gλt:h truncated, corrected λ-return
Gλst , Gλat λ-return, corrected by estimated state, or action, values

p(s′, r | s, a) probability of transition to state s′ with reward r, from state s and action a
p(s′ | s, a) probability of transition to state s′, from state s taking action a
r(s, a) expected immediate reward from state s after action a
r(s, a, s′) expected immediate reward on transition from s to s′ under action a

vπ(s) value of state s under policy π (expected return)
v∗(s) value of state s under the optimal policy
qπ(s, a) value of taking action a in state s under policy π
q∗(s, a) value of taking action a in state s under the optimal policy

V, Vt array estimates of state-value function vπ or v∗
Q,Qt array estimates of action-value function qπ or q∗
V̄t(s) expected approximate action value, e.g., V̄t(s)

.
=
∑
a π(a|s)Qt(s, a)

Ut target for estimate at time t

δt temporal-difference (TD) error at t (a random variable)
δst , δ

a
t state- and action-specific forms of the TD error

n in n-step methods, n is the number of steps of bootstrapping

d dimensionality—the number of components of w
d′ alternate dimensionality—the number of components of θ
w,wt d-vector of weights underlying an approximate value function
wi, wt,i ith component of learnable weight vector
v̂(s,w) approximate value of state s given weight vector w
vw(s) alternate notation for v̂(s,w)
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q̂(s, a,w) approximate value of state–action pair s, a given weight vector w
∇v̂(s,w) column vector of partial derivatives of v̂(s,w) with respect to w
∇q̂(s, a,w) column vector of partial derivatives of q̂(s, a,w) with respect to w

x(s) vector of features visible when in state s
x(s, a) vector of features visible when in state s taking action a
xi(s), xi(s, a) ith component of vector x(s) or x(s, a)
xt shorthand for x(St) or x(St, At)
w>x inner product of vectors, w>x

.
=
∑
i wixi; e.g., v̂(s,w)

.
= w>x(s)

v,vt secondary d-vector of weights, used to learn w
zt d-vector of eligibility traces at time t

θ,θt parameter vector of target policy
π(a|s,θ) probability of taking action a in state s given parameter vector θ
πθ policy corresponding to parameter θ
∇π(a|s,θ) column vector of partial derivatives of π(a|s,θ) with respect to θ
J(θ) performance measure for the policy πθ
∇J(θ) column vector of partial derivatives of J(θ) with respect to θ
h(s, a,θ) preference for selecting action a in state s based on θ

b(a|s) behavior policy used to select actions while learning about target policy π
b(s) a baseline function b : S 7→ R for policy-gradient methods
b branching factor for an MDP or search tree
ρt:h importance sampling ratio for time t through time h
ρt importance sampling ratio for time t alone, ρt

.
= ρt:t

r(π) average reward (reward rate) for policy π
R̄t estimate of r(π) at time t

µ(s) on-policy distribution over states
µ |S|-vector of the µ(s) for all s ∈ S

‖v‖2µ µ-weighted squared norm of value function v, i.e., ‖v‖2µ
.
=
∑
s∈S µ(s)v(s)2

η(s) expected number of visits to state s per episode
Π projection operator for value functions
Bπ Bellman operator for value functions

A d× d matrix A
.
= E

[
xt
(
xt − γxt+1

)>]
b d-dimensional vector b

.
= E[Rt+1xt]

wTD TD fixed point wTD
.
= A−1b (a d-vector

I identity matrix
P |S| × |S| matrix of state-transition probabilities under π
D |S| × |S| diagonal matrix with µ on its diagonal
X |S| × d matrix with the x(s) as its rows

δ̄w(s) Bellman error (expected TD error) for vw at state s
δ̄w, BE Bellman error vector, with components δ̄w(s)

3



VE(w) mean square value error VE(w)
.
= ‖vw − vπ‖2µ

BE(w) mean square Bellman error BE(w)
.
=
∥∥δ̄w∥∥2µ

PBE(w) mean square projected Bellman error PBE(w)
.
=
∥∥Πδ̄w

∥∥2
µ

TDE(w) mean square temporal-difference error TDE(w)
.
= Eb

[
ρtδ

2
t

]
RE(w) mean square return error
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