class: center, middle, inverse, title-slide .title[ # Temporal Difference (TD) methods for prediction ] .author[ ### Lars Relund Nielsen ] --- layout: true <!-- Templates --> <!-- .pull-left[] .pull-right[] --> <!-- knitr::include_graphics("img/bandit.png") --> <!-- .left-column-wide[] .right-column-small[] --> --- ## Learning outcomes * Describe what Temporal Difference (TD) learning is. * Formulate the incremental update formula for TD learning. * Define the temporal-difference error. * Interpret the role of a fixed step-size. * Identify key advantages of TD methods over DP and MC methods. * Explain the TD(0) prediction algorithm. * Understand the benefits of learning online with TD compared to MC methods. --- ## What is TD learning? * TD learning is a combination of Monte Carlo (MC) and dynamic programming (DP) ideas * Like MC, TD can predict using a model-free environment and learn from experience. * Like DP, TD update estimates based on other learned estimates, without waiting for a final outcome (bootstrapping). * TD can learn on-line and do not need to wait until the whole sample-path is found. * Given a policy `\(\pi\)`, we want to estimate the state-value function: `$$v_\pi(s) = \mathbb{E}_\pi[G_t | S_t = s].$$` where the return is `$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$` <!-- TD in general learn more efficiently than MC due to bootstrapping. In this module prediction using TD is considered. --> --- ## Estimating the state-value How do we find estimates `\(V\)` of `\(v_\pi\)` and the return `\(G_t\)`? * For MC we generated sample-paths and calculated returns `\(G_t\)` and updated the estimate by taking the average over all the realized returns. * For TD we use `\begin{align} v_\pi(s) &= \mathbb{E}_\pi[G_t | S_t = s] \\ &= \mathbb{E}_\pi[R_{t+1} + \gamma G_{t+1} | S_t = s] \\ &= \mathbb{E}_\pi[R_{t+1}| S_t = s] + \gamma \mathbb{E}_\pi[G_{t+1} | S_t = s] \\ &= \mathbb{E}_\pi[R_{t+1}| S_t = s] + \gamma \mathbb{E}_\pi[v_\pi(S_{t+1})]. \end{align}` * TD: Given a realized reward `\(R_{t+1}\)` and next state `\(S_{t+1}\)`, an estimate for the return `\(G_t\)` is `\(R_{t+1} + \gamma V(S_{t+1})\)` * TD update the estimate based on the estimate of the next state (bootstrapping). --- ## Incremental update .pull-left[ **Monte Carlo** * Generate sample-path and calculate `\(G_t\)` along the path. * Unbiased estimate. * Update the estimate using $$ V(S_t) \leftarrow V(S_t) + \alpha_n\left[G_t - V(S_t)\right]. $$ * Can update after the full sample-path known. ] -- .pull-right[ **Temporal Difference** * Replace `\(G_t\)` with the TD estimate `\(R_{t+1} + \gamma V(S_{t+1}).\)` * Update now becomes .midi[ `$$V(S_t) \leftarrow V(S_t) + \alpha_n\left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right].$$` ] * Can update when the next state `\(S_{t+1}\)` is observed. * As the estimate of `\(S_{t+1}\)` improve the estimate of `\(S_t\)` also improve. * The incremental update is called *TD(0)* or one-step TD because it use a one-step lookahead. ] --- ## A note about fixed step-size If the environment is non-stationary (e.g. transition probabilities change over time) then a fixed step-size `\(\alpha\in(0,1]\)` may be appropriate. A fixed step-size corresponds to a weighted average of the past observed returns and the initial estimate of `\(S_t\)`: $$ `\begin{align} V_{n+1} &= V_n +\alpha \left[G_n - V_n\right] \nonumber \\ &= \alpha G_n + (1 - \alpha)V_n \nonumber \\ &= \alpha G_n + (1 - \alpha)[\alpha G_{n-1} + (1 - \alpha)V_{n-1}] \nonumber \\ &= \alpha G_n + (1 - \alpha)\alpha G_{n-1} + (1 - \alpha)^2 V_{n-1} \nonumber \\ & \vdots \nonumber \\ &= (1-\alpha)^n V_1 + \sum_{i=1}^{n} \alpha (1 - \alpha)^{n-i} G_i \\ \end{align}` $$ That is, a larger weight is used for recent observations compared to old observations. Moreover, if `\(\alpha=1\)` then `\(V_{n+1} = G_t\)` and we use the realized return as the estimate. --- ## The TD error * The term `$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t),$$` is denoted the *temporal difference error* (*TD error*). * Equals the difference between the current estimate `\(V(S_t)\)` and the updated estimate `\(R_{t+1} + \gamma V(S_{t+1})\)`. --- ## TD(0) prediction algorithm <img src="img/td0-pred.png" width="90%" style="display: block; margin: auto;" /> * Also works for continuing processes (infinite number of time-steps of inner loop). * No stopping criterion is given but could stop when small for state-value differences. --- ## TD prediction for action-values * Since model-free we need to estimate action-values instead so we can improve the policy. * Goal is to find `\(q_*\)` for which the optimal action is the greedy action. * To find `\(q_*\)`, we first need to predict action-values `\(q_\pi\)` for a policy `\(\pi\)`. * The incremental update equation must be modified to use `\(Q\)` values: `$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha\left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)\right].$$` * Given policy `\(\pi\)` you need to know `\(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}\)` or short SARSA. * This acronym is used to name the SARSA algorithm for control (next week). * To ensure exploration of all action-values we need e.g. an `\(\epsilon\)`-soft behavioural policy. <!-- # References --> <!-- ```{r, results='asis', echo=FALSE} --> <!-- PrintBibliography(bib) --> <!-- ``` --> [BSS]: https://bss.au.dk/en/ [bi-programme]: https://kandidat.au.dk/en/businessintelligence/ [course-help]: https://github.com/bss-osca/rl/issues [cran]: https://cloud.r-project.org [cheatsheet-readr]: https://rawgit.com/rstudio/cheatsheets/master/data-import.pdf [course-welcome-to-the-tidyverse]: https://github.com/rstudio-education/welcome-to-the-tidyverse [DataCamp]: https://www.datacamp.com/ [datacamp-signup]: https://www.datacamp.com/groups/shared_links/cbaee6c73e7d78549a9e32a900793b2d5491ace1824efc1760a6729735948215 [datacamp-r-intro]: https://learn.datacamp.com/courses/free-introduction-to-r [datacamp-r-rmarkdown]: https://campus.datacamp.com/courses/reporting-with-rmarkdown [datacamp-r-communicating]: https://learn.datacamp.com/courses/communicating-with-data-in-the-tidyverse [datacamp-r-communicating-chap3]: https://campus.datacamp.com/courses/communicating-with-data-in-the-tidyverse/introduction-to-rmarkdown [datacamp-r-communicating-chap4]: https://campus.datacamp.com/courses/communicating-with-data-in-the-tidyverse/customizing-your-rmarkdown-report [datacamp-r-intermediate]: https://learn.datacamp.com/courses/intermediate-r [datacamp-r-intermediate-chap1]: https://campus.datacamp.com/courses/intermediate-r/chapter-1-conditionals-and-control-flow [datacamp-r-intermediate-chap2]: https://campus.datacamp.com/courses/intermediate-r/chapter-2-loops [datacamp-r-intermediate-chap3]: https://campus.datacamp.com/courses/intermediate-r/chapter-3-functions [datacamp-r-intermediate-chap4]: https://campus.datacamp.com/courses/intermediate-r/chapter-4-the-apply-family [datacamp-r-functions]: https://learn.datacamp.com/courses/introduction-to-writing-functions-in-r [datacamp-r-tidyverse]: https://learn.datacamp.com/courses/introduction-to-the-tidyverse [datacamp-r-strings]: https://learn.datacamp.com/courses/string-manipulation-with-stringr-in-r [datacamp-r-dplyr]: https://learn.datacamp.com/courses/data-manipulation-with-dplyr [datacamp-r-dplyr-bakeoff]: https://learn.datacamp.com/courses/working-with-data-in-the-tidyverse [datacamp-r-ggplot2-intro]: https://learn.datacamp.com/courses/introduction-to-data-visualization-with-ggplot2 [datacamp-r-ggplot2-intermediate]: https://learn.datacamp.com/courses/intermediate-data-visualization-with-ggplot2 [dplyr-cran]: https://CRAN.R-project.org/package=dplyr [debug-in-r]: https://rstats.wtf/debugging-r-code.html [google-form]: https://forms.gle/s39GeDGV9AzAXUo18 [google-grupper]: https://docs.google.com/spreadsheets/d/1DHxthd5AQywAU4Crb3hM9rnog2GqGQYZ2o175SQgn_0/edit?usp=sharing [GitHub]: https://github.com/ [git-install]: https://git-scm.com/downloads [github-actions]: https://github.com/features/actions [github-pages]: https://pages.github.com/ [gh-rl-student]: https://github.com/bss-osca/rl-student [gh-rl]: https://github.com/bss-osca/rl [happy-git]: https://happygitwithr.com [hg-install-git]: https://happygitwithr.com/install-git.html [hg-why]: https://happygitwithr.com/big-picture.html#big-picture [hg-github-reg]: https://happygitwithr.com/github-acct.html#github-acct [hg-git-install]: https://happygitwithr.com/install-git.html#install-git [hg-exist-github-first]: https://happygitwithr.com/existing-github-first.html [hg-exist-github-last]: https://happygitwithr.com/existing-github-last.html [hg-credential-helper]: https://happygitwithr.com/credential-caching.html [hypothes.is]: https://web.hypothes.is/ [osca-programme]: https://kandidat.au.dk/en/operationsandsupplychainanalytics/ [Peergrade]: https://peergrade.io [peergrade-signup]: https://app.peergrade.io/join [point-and-click]: https://en.wikipedia.org/wiki/Point_and_click [pkg-bookdown]: https://bookdown.org/yihui/bookdown/ [pkg-openxlsx]: https://ycphs.github.io/openxlsx/index.html [pkg-ropensci-writexl]: https://docs.ropensci.org/writexl/ [pkg-jsonlite]: https://cran.r-project.org/web/packages/jsonlite/index.html [R]: https://www.r-project.org [RStudio]: https://rstudio.com [rstudio-cloud]: https://rstudio.cloud/spaces/176810/join?access_code=LSGnG2EXTuzSyeYaNXJE77vP33DZUoeMbC0xhfCz [r-cloud-mod12]: https://rstudio.cloud/spaces/176810/project/2963819 [r-cloud-mod13]: https://rstudio.cloud/spaces/176810/project/3020139 [r-cloud-mod14]: https://rstudio.cloud/spaces/176810/project/3020322 [r-cloud-mod15]: https://rstudio.cloud/spaces/176810/project/3020509 [r-cloud-mod16]: https://rstudio.cloud/spaces/176810/project/3026754 [r-cloud-mod17]: https://rstudio.cloud/spaces/176810/project/3034015 [r-cloud-mod18]: https://rstudio.cloud/spaces/176810/project/3130795 [r-cloud-mod19]: https://rstudio.cloud/spaces/176810/project/3266132 [rstudio-download]: https://rstudio.com/products/rstudio/download/#download [rstudio-customizing]: https://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio [rstudio-key-shortcuts]: https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts [rstudio-workbench]: https://www.rstudio.com/wp-content/uploads/2014/04/rstudio-workbench.png [r-markdown]: https://rmarkdown.rstudio.com/ [ropensci-writexl]: https://docs.ropensci.org/writexl/ [r4ds-pipes]: https://r4ds.had.co.nz/pipes.html [r4ds-factors]: https://r4ds.had.co.nz/factors.html [r4ds-strings]: https://r4ds.had.co.nz/strings.html [r4ds-iteration]: https://r4ds.had.co.nz/iteration.html [stat-545]: https://stat545.com [stat-545-functions-part1]: https://stat545.com/functions-part1.html [stat-545-functions-part2]: https://stat545.com/functions-part2.html [stat-545-functions-part3]: https://stat545.com/functions-part3.html [slides-welcome]: https://bss-osca.github.io/rl/slides/00-rl_welcome.html [slides-m1-3]: https://bss-osca.github.io/rl/slides/01-welcome_r_part.html [slides-m4-5]: https://bss-osca.github.io/rl/slides/02-programming.html [slides-m6-8]: https://bss-osca.github.io/rl/slides/03-transform.html [slides-m9]: https://bss-osca.github.io/rl/slides/04-plot.html [slides-m83]: https://bss-osca.github.io/rl/slides/05-joins.html [sutton-notation]: https://bss-osca.github.io/rl/misc/sutton-notation.pdf [tidyverse-main-page]: https://www.tidyverse.org [tidyverse-packages]: https://www.tidyverse.org/packages/ [tidyverse-core]: https://www.tidyverse.org/packages/#core-tidyverse [tidyverse-ggplot2]: https://ggplot2.tidyverse.org/ [tidyverse-dplyr]: https://dplyr.tidyverse.org/ [tidyverse-tidyr]: https://tidyr.tidyverse.org/ [tidyverse-readr]: https://readr.tidyverse.org/ [tidyverse-purrr]: https://purrr.tidyverse.org/ [tidyverse-tibble]: https://tibble.tidyverse.org/ [tidyverse-stringr]: https://stringr.tidyverse.org/ [tidyverse-forcats]: https://forcats.tidyverse.org/ [tidyverse-readxl]: https://readxl.tidyverse.org [tidyverse-googlesheets4]: https://googlesheets4.tidyverse.org/index.html [tutorial-markdown]: https://commonmark.org/help/tutorial/ [tfa-course]: https://bss-osca.github.io/tfa/ [Udemy]: https://www.udemy.com/ [vba-yt-course1]: https://www.youtube.com/playlist?list=PLpOAvcoMay5S_hb2D7iKznLqJ8QG_pde0 [vba-course1-hello]: https://youtu.be/f42OniDWaIo [vba-yt-course2]: https://www.youtube.com/playlist?list=PL3A6U40JUYCi4njVx59-vaUxYkG0yRO4m [vba-course2-devel-tab]: https://youtu.be/awEOUaw9q58 [vba-course2-devel-editor]: https://youtu.be/awEOUaw9q58 [vba-course2-devel-project]: https://youtu.be/fp6PTbU7bXo [vba-course2-devel-properties]: https://youtu.be/ks2QYKAd9Xw [vba-course2-devel-hello]: https://youtu.be/EQ6tDWBc8G4 [video-install]: https://vimeo.com/415501284 [video-rstudio-intro]: https://vimeo.com/416391353 [video-packages]: https://vimeo.com/416743698 [video-projects]: https://vimeo.com/319318233 [video-r-intro-p1]: https://www.youtube.com/watch?v=vGY5i_J2c-c [video-r-intro-p2]: https://www.youtube.com/watch?v=w8_XdYI3reU [video-r-intro-p3]: https://www.youtube.com/watch?v=NuY6jY4qE7I [video-subsetting]: https://www.youtube.com/watch?v=hWbgqzsQJF0&list=PLjTlxb-wKvXPqyY3FZDO8GqIaWuEDy-Od&index=10&t=0s [video-datatypes]: https://www.youtube.com/watch?v=5AQM-yUX9zg&list=PLjTlxb-wKvXPqyY3FZDO8GqIaWuEDy-Od&index=10 [video-control-structures]: https://www.youtube.com/watch?v=s_h9ruNwI_0 [video-conditional-loops]: https://www.youtube.com/watch?v=2evtsnPaoDg [video-functions]: https://www.youtube.com/watch?v=ffPeac3BigM [video-tibble-vs-df]: https://www.youtube.com/watch?v=EBk6PnvE1R4 [video-dplyr]: https://www.youtube.com/watch?v=aywFompr1F4 [wiki-snake-case]: https://en.wikipedia.org/wiki/Snake_case [wiki-camel-case]: https://en.wikipedia.org/wiki/Camel_case [wiki-interpreted]: https://en.wikipedia.org/wiki/Interpreted_language [wiki-literate-programming]: https://en.wikipedia.org/wiki/Literate_programming [wiki-csv]: https://en.wikipedia.org/wiki/Comma-separated_values [wiki-json]: https://en.wikipedia.org/wiki/JSON